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Abstract. Two algorithms for finding a global minimum of the product of two affine fractional 
functions over a compact convex set and solving linear fractional programs with an additional 
constraint defined by the product of two affine fractional functions are proposed. The algorithms are 
based on branch and bound techniques using an adaptive branching operation which takes place in 
one-dimensional intervals. Results from numerical experiments show that large scale problems can 
be efficiently solved by the proposed methods. 
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1. In troduct ion  

Branch and bound techniques are the most commonly  used for the solution of  
nonconvex global optimization problems. Branch and bound methods differ in the 
way they define rules for branching and the methods used for deriving bounds. 
They  avoid exhaustive research. 

In their recent paper [8] Muu and Oettli developed a branch and bound algorithm 
for minimizing a convex - concave function over a convex set. There the branching 
operation is an adaptive bisection whereas the bounding operation is based on 
a suitable relaxation of  the objective function. The main disadvantage of  these 
operations is that they require searching the vertices of  the polyhedral  convex 
sets encountered in the algorithm. The number of  these vertices may increase 
exponential ly with the number  of  iterations. Determining them is the most costly 
part of  the algorithm. 

In this paper we extend the algorithm proposed in [8] for minimizing the 
product  of  two affine fractional functions over a convex set, and for solving linear 
fractional programs with an additional constraint defined by the product of  two 
affine fractional functions. We show that for these problems all polyhedral  convex 
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sets encountered in the algorithm are one-dimensional intervals (hence having 
exactly two vertices). 

The product of two affine fractional functions appears in the bond portfolio 
optimization model [4]. A special case is the product of two affine functions which 
has some applications in VLSI chip design, microeconomics and transportation. 
The problems dealing with the product of two affine functions recently have been 
considered by a number of authors (see, e.g. [2, 5, 6, 9, 10, 11, 13, 14]). In [5] 
Konno and Yajima developed two algorithms for minimizing and maximizing the 
product of two affine fractional functions over a polytope. Their first algorithm is a 
parametric simplex method with two parameters. The second algorithm is a branch 
and bound one in which for calculating lower bounds it requires minimizing the 
sum of two affine fractional functions. As it is reported in their paper, the second 
algorithm is more efficient than the first one. 

In the algorithms that we shall describe in the next sections, the bounding 
operation requires solving only linear fractional subprograms. In contrast to the 
methods in [5], we do not have to partition the feasible region according to the 
sign of the affine fractional functions involved in the problems. Results from 
numerical experiments show that large scale problems can be efficiently solved by 
the proposed method. 

2. An Algorithm for Minimizing the Product of Two Affine Fractional 
Functions with Convex Constraints 

We consider first the following problem, denoted by (P): 

{ f l (x )  f3(x) } 
rain f ( x ) : =  f2(x)f4(x)  "x C D , (P) 

where fi (i = 1 , . . . ,  4) are affine functions defined by f i (x)  = c~x + bi and D 
is a compact convex set in R n. We assume throughout the paper that fi (x) > 0 (i = 
2, 4) for all x E D. Hence the objective function f ( x )  := ( f l (x ) f3(x) ) / ( fa(x) fg(x) )  
is continuous on D. 

Take t : = fl (x) / f2 (x); then solving problem (P) amounts to solving problem 
(P) 

{, f3(x)  f l (x)  } 
min ~ f - ~  : x E D, f - ~  - t . ( P ) 

Note that due to the constraint fl (__x)/f2(x) = t, the feasible domain of Prob- 
lem (P) may be not convex. Thus (P) is not of the form of the problems under 
consideration in [8]. However, the idea of lower bounding operation proposed in 
[8] could be applied to (P). Namely, let 

to := min f l (x)  To := max f l (x )  
~:ED f2(x) '  ~eD fe(x) '  
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then for every subinterval I := [tl, t2] C_ [to, To] we have/3(I) ~< a(I ) ,  where 

/3(1) := min (m~n{ ~ f3(x) f l (x)  } )  
i=1,2 ~if4(x) "X E D, t 1 ~< ~ ~< t 2 

a(I):=min{ tf3(x)'xED'(~,t) f-~ f2(x)fl(x) _ t, tl ~< t ~< t2} �9 

TO see this, we observe that the set 

:= { (X , t )  E Rn+l " x E D, fl(X) } P f2(x) - t ,  tl <.t<.t2 

is contained in the set 

Q:= (z,t)'xED, t l < . t < . t 2  . 

Hence 

{ } } ~f3(x) " (x,t) E P >>. min ~ f - ~  " (x,t) E O a ( I )  = min(x,t) ~f4--~ (x,t) 

= min min f~ f3(x) f l (x)  } 
x i=1,2 [~i f4(x) "x E D, tl ~ ~ V t2 

= m i n m i n I t i f 3 ( x )  f l (x)  } i=1,2 x f4(x) "X E D, tl ~< ~ ~< t2 = /3(1). 

Thus to calculate/3(1) requires minimizing the two affine fractional functions 

t~f3(x)/f4(x) (i = 1,2) 

subject to 

x E D, tl <. f l (x) / f2(x)  <. t2. 

These problems can be solved very efficiently by a variant of the simplex method 
[1] if D is a polyhedral convex set defined by a system of linear inequalities. 

Based on this lower bounding operation we obtain a branch and bound algo- 
rithm which can be described as follows: 

ALGORITHM 1 
Initialization. Compute 

to := min{f l (x) / fz(x)  : x E D}, 
To := max{f , (x) / f2(x)  : x E D}. 

Let/To = [to, To] and compute 

f, f3(.) } 
/3( t o ) :=  min ~ o f 4 - ~ : x  E D , 

f3(x) 
/3(To) := min \.0f4-- ~ " x E D } .  
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Let u ~ v ~ be the obtained solutions of these programs. Take 

/30 :=/3(/o) = min{/3(t0),/3(T0)}, C~o := min{f(u~ f(v~ 

and x ~ E {u ~ ~ such that f (x  ~ = ao. Set Ado := {Io}, k +- 
iteration k. 

LE D. MUU ET AL. 

0 and go to 

Iteration k (k = 0, 1, . . . ) .  At the beginning of iteration k we have a collection 3/l k 
of subintervals [ C_ Io. For each I E .Mk we have determined/3(1). Furthermore 
we have a lower bound/3k and an upper bound ak for the optimal value f . ,  and a 
feasible point x k such that f (x  k) = a/:. 

(a) If a/: ~</3/:, then terminate: x/: is an optimal solution. 
(b) If ct/: >/3/:, then define 

I~- := {~ E I/: : { ~< (~/: + fl(w/:)/f2(w/:))/2}, 
1 + := {{ E I/: : {/> (~/: + fl(w/:)/f2(w/:))/2}, 

where {/: and w/: correspond to/3/: =/3(Ik),  i.e., 

r f3(wk) f~  f3 (x ) ,  f l (x)  } 
/ 3 k -  gk f 4 - ~ -  min ~gk f4(x ) x E D ,  f2(x----~I~ 

with ~k being an endpoint (vertex) of the interval Ik. 
(c) Compute/3(I~-) and/3(1+). Let z k+l be the best feasible point obtained 

during the computation of/3(I~- ) and/3(I +). Let 

a~r := min{ak, f(zk+l)}, 7r := M\Ik  U {I~,I+}, 

x k+l is feasible point such that ak+l = f(x ~+1), 

M k + l  :=  { I  E "]P~k : /3(1) ~ O~k+l}" 

(d) Select I~+ 1 E A4 k+ 1 such that 

/3(Ik+1) := min{/3(I): I E -/~k-t-1}. 

Let/3k+l := /3(Ik+l), increase k by 1 and go to iteration k. 
This completes the description of the algorithm. 

REMARKS. (1) This algorithm is similar to the one that Muu and Tam used in 
their earlier paper [9] for minimizing the sum of a convex and the product of two 
affine functions over a convex set. 

(2) For each interval I = [tl, t2] C [to, To], to compute/3([) we have to solve 
the following two programs: 

{ f3(x) f l (x)  } ( i  1,2). min t~ f4 (x)  : X E D, tl ~< ~ ~< t2 = 
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Note that these programs differ from each other only by the multiplier in the 
objective functions. Thus their solutions coincide if tlt2 ) O. 

(3) From the definition of w k we have fl(wk)/fz(w k) E[k. Hence both I~- 
and I + are nonempty. In fact 

and 

min{~k, f l (wk)/ f2(wk)} E I'[ 

max{(k, fl(wk)/f2(wk)} E I +. 

Note that if ~k = fl (wk)/f2(wk), then 

& fl(wk)/3(  k) 
= f2(wk) f4(wh) " 

This and flk ~ f . ,  w k E D imply that w k is a solution of the problem. 
(4) If we are interested only in an e-solution, then an interval I can be deleted 

from further consideration if 

[fl(wI)/f2(w I) - tI[ <<. elf4(wl)/f3(wI)[ (1) 

where 

tlfB(wl) minf  tlfB(wl) f l (x )  } 
/3(• re(w1) = L f4-- 'x D'fT  

and t I is an endpoint of the interval I.  
Indeed, since/3(I) := tzf3(wX)/f4(wZ) is a lower bound of the objective func- 

t i onon these tx  E D, fl(x)/f2(x) E Iweobta in ,  f romw r E D, fl(wI)/f2(w I) E 
I, that 

fl(W I) f3(w I) A f3(w 1 ) 
f ,  -- fl([) < f (w  I) --/3([) = f2(wi) f4(wi) , 

fs(wI) ( fl(wI) ) 
- - f 4 ( w  I) \ f 2 - 7 ~  tI ( e .  

In particular, if (1) holds for Ik, then w k is an e-solution to (P). 
(5) The above algorithm can be applied to the following problem: 

min ( f l ( x ) f 3 ( x )  f5(x) } 
f2(x) f4(x----) + f6(x-----~ :x  E D , 

where f/ (i = 1 , . . . ,  6) are affine functions defined by fi(x) = c~x + bi with 
c i E R  n, bi E R. 
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In this case, for each interval I = [tl, t2] the lower bound f l ( I)  can be calculated 
similarly as before. Namely, let 

( f a ( x )  f6(x-----~ "x f5(2) . ~ f l (x)  } ( i  1,2). fl(ti) = min tif4- ~ + E D, tl ~< ~< t2 = 

Then f l ( I)  = mini=l,2 fl(ti) is a lower bound for 

a ( I )  := rain f ( x )  " x E D, t 1 <~ f - - ~  <~ t2 �9 

Thus to calculate f l ( I )  we have to minimize the sum of two affine fractional 
functions over a convex set. If D is a polyhedron defined by D := {x E R ~ : 
A x  = b, x ) 0}, then this program can be solved efficiently by the algorithm 
proposed in [61. 

Now we turn to the convergence of the algorithm. 

THEOREM 1. (i) I f  the algorithm terminates at some iteration k, then ak = flk = 
f . ,  and x k solves (P). 

(ii) I f  the algorithm is infinite, then flk S f . ,  ak \ f . ,  and any limit point o f  
{x k } solves (P). 

Proof. (i) If the algorithm terminates at some iteration k, then ak ~< fl~. This 
and flk <<. f .  <. ak = f ( x k ) ,  x k E D imply that flk = f .  = ak. Hence (i). 

(ii) If the algorithm is infinite, then it generates a nested subsequence of the 
sequence {/k } of subintervals of Io which for the sake of simplicity we also denote 
by {Ik}- 

Since Ik+l C I~- tO 1 + for every k, we have from the branching operation that 
Ik+l C [k- or Ik+l C I + for all k. 

Consider first the case when Ik+l C I~-. Let ~ := f l ( w k ) / f 2 ( w  k) and dk := 
(~k + ~ ) / 2 .  Since 

TA(Wk) f 3 (wk )  flk " f 3 (wk )  
o~: ~ f2(wk)  fa(Wk) , = gk f 4 - 7 ~  , 

we have 

f l (w k ) f3(w k) f3(w k ) f3 (wk) l~, 
0 < ak - flk ~< f2(wk) f4(wk) ~k f4(wk) -- ~ t  k -- ~k). 

Thus i f ~  > {k, then we use {~+1 <~ dk to obtain 

, 

0 < 0% -- flk <~ Z, f4- -7-~,~k  -- dk) <~ z'f4--7-(--~\,k -- ~k+l)"  (2) 

If {~ < {k, then we use {k+l ~< d~ to obtain 

f3(wk) (~k -- dk) <~ f3(wk)({k - -  ~ k + l ) "  (3) 
0 < 0% -- flk <~ f4(wk------ ~ f4--4-~" 
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Since both {{k}, {{~} are contained in I0, we may assume, taking subsequences if 
necessary, that {{k} and {~}  are convergent. This and boundedness of f3(x)/f4(x) 
on D imply, from (2) and (3), that ~k - /3k  --+ 0 as k -+ oo. 

Assume now that Ik+l C I +. By a similar argument we obtain (2) and (3), and 
hence ak - /3k  --+ 0 as k -+ ~ .  From this and monotonicity of {/3k} and {c~k} it 
follows that/3k /7 f , ,  c~ "N f ,  which together with ak = f(x ~) imply that any 
limit point of {x k } is a global optimal solution of Problem (P). 

3. Linear Fractional Programs with an Additional Constraint Defined by 
the Product of Two Affine Fractional Functions 

In this section we modify the method described in the previous section for solving 
the following problem, denoted by (P1) :  

{ fg(x) fl(x) f3(x) } 
min f(x):= f6(x) "x E D, f2(x) f4(x~ + (r ~< 0 , (Pi) 

where as before fi (i = 1 , . . . ,  6) are affine functions defined on the convex set 
D C R n. We assume that fi (i = 2, 4, 6) are positive on D, (r E R. 

Constraints defined by the product of two affine fractional functions arise in 
some optimization models in economics (see, e.g. [12]), where the ratio of two 
profit rates are required to be greater than a constant. The profit rate is usually 
assumed to be the ratio of two linear functions, where the numerator is the profit and 
the denominator is the capital�9 For example, in a domestic and foreign investment 
model, let rl(x) := fl(x)/f4(x) and g2(x) :---- f2(x)/f3(x) denote the profit 
rates of domestic and foreign investment respectively. Usually besides the linear 
constraints ri(x) /> cri (i = 1,2) the constraint rl(x)/r2(x) >1 ~ is introduced. 
With (~ > 1 this constraint means that the foreign investment is less desirable than 
the domestic one. Convex programming problems with an additional constraint 
defined by the product of two convex functions is recently considered in [7]. 

Let us return to Problem (/91). If we take t = fl  (x) / f2 (x), then (P1) is reduced 
to the following problem, denoted by (P1): 

min ~ fs(x)  . t f3(x) f l (x )  \ - -  
(z,t) [. f6(x) x C D, f4(x) + cr ~< 0, t -- f2(x) J"  (P1) 

Let 

to := min f l (x )  fl(x) 
~cD f2(x) '  To := max �9 

For each subinterval I = [ t l ,  t2] C [0 = [to, TO], let 

�9 f f 5 ( x )  ., f3(x) 
/3(ti) = minx ~f6(x)--  : x E D, ~if4-- ~ + cr ~< 0, 

(i = 1,2) 

/,(x) 1 
tl ~< ~ t2 f  
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and 

/3(I) = min/3(ti) 
i=1,2 

Then 

/3(I) ~< a ( I )  = min 
fs(x) 

m 

(x,t) ~. f6(x) 
t f3(x)  x E D, f4(x) § ~<0, t E [ ,  t -  f l (x )  

f2(x) J " 

This can be seen by an argument similar to the previous one. Let ~i E { t l ,  t2} and 
x x correspond to/3(I), i.e., 

f5(x I) 
/3(I)- f6(x• 

�9 ( f 5 ( x )  ~. f3(x) f l (x)  \ 
= m m ~ f - ~ , x E D ,  ~* f4(x) + a  <~ 0, tl ~< ~ ~ t 2 f  . 

It is clear that if ~i = fl  (xX)/f2(xI),  then x t is a feasible point of (/)1). In this case 
the interval [ may be deleted from further consideration. It may occur that during 
the bounding operation no feasible point of (P1) is obtained, since the feasible 
domain of (P1) may be not convex or even not connected�9 Thus we need to modify 
Algorithm 1 for solving Problem (P1). As usually, we adopt the convention that 
the minimum of a function over an empty set equals +oc. 

ALGORITHM 2 Initialization. Compute 

to := min { f l (x)  } { f l (x)  } f2(x) � 9  , T o : = m a x  f2(x) � 9  . 

Set [o := [to, To], Fo := {Io}, Afo = r0. 
Let ao be the best currently known upper bound of f .  (if such a bound is not 

available, let ao = +oc). 

Iteration k (k = O, 1,.. .).  
(1) For each I = [ t l ,  t2] E Ark we compute/3(1) by solving two linear fractional 

programs: 

min { fs(x) �9 f3(x) f l (x)  } ( i  
f 6 ( x ) ' X E D ,  ~ i f - -~+er<~O,  t l  ~< f2---~ <~ * 2 = , 12) .  

If feasible points are obtained, update the upper bound oek and the best currently 
known feasible point x ~ such that f ( x  k) = ~k. If no feasible point is available, let 
ak = +c~o. 

(2) Delete all I E rk  such that/3([) >/ak. Let TCk be the collection of remaining 
intervals. 
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(a) If ~ k  = 0, then terminate: x t is an optimal solution (c~t < oo) or (P1) is 
infeasible ( a t  = +oo). 

(b) If ~ t  r 0, then select Ik E ~ k  such that 

/3k := /3( I t )  = min{/3(I):  I E nk}.  

Let {t E I t  and w k E D corresponding to/3t, i.e., 

~ f3 (x )  /3t = f ( w  t ) =  min f ( x )  " x E D, ~k f - ~  + 

Bisect I~ into the two intervals I~- and I + as follows: 

I ~ - : =  t E I t ' t < , .  ~ t + ~ 2 ~ - ~ j / 2  , 

Zl (~k) 
I+ := { t  E I t  " t >" @k + -f2~-~) ] /2 } " 

~ <~ o, f , (x )  } 
f2(x--5 ~ ~t 

(3) Set r t + l  := r k \ { I t }  U { / k - , / ~ } ,  J~ft+l := {Ik,[+h}. 
Increase k by 1 and go to iteration k. 

REMARKS. (1) If f3(x) ) 0 for every x E D such that tl ~< f l ( x ) / f 2 (x )  <. t2, 
then 

min ~ fs(x) . f3(x) f l(2) } 
/3(I) = [ f6 (x )  x E D, tlf4-- ~ + f f ~ 0 ,  tl ~< ~ ~<t 2 . 

Likewise, if f3(x) < 0 for every x E D, tl <<. f l ( x ) / f 2 (x )  <<. t2, then 

/3(1) = min [ fs(x) . t f3(x) fl(X) } 
[f6(X) x E D, lf.4----~+a~<0, tl <<. f - - ~  <~ t2 . 

Thus in these cases we have to solve only one linear fractional program for com- 
puting/3 (I) ,  

(2) If ]~k - f l (wk) / f z (wk)]  <~ c.f4(wt)/]f3(wk)l ,  we may consider w t as an 
c-solution in the sense that f ( w  t) <~ f , ,  w k E D and w k is c-feasible for the 
constraint 

fl(x) f3(x) fl(w k) f3(w k) 
f2(x) f4(x-----5 + ~ <~ 0, i.e. f 2 ( w b  f 4 ( w b  + ~ "< c. 

Indeed, since 

4~ 5(~k-----J) + ~ < 0 
f4(~b 
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we have 

f~(wk--) f3(wk--) + o- <~ fl(wk~) f3(21)k.----) Av O" -- (k f3(213k) 
f2(~ k) f4(~ k) h(~ k) f4(~ k) f4(~ k) 

f3(wk) ( f i (wk)  ) 'f3(wk)l ]fi(wk) 
- f4(~k) \f2(~ k) & < f4(~) f2(~ k) ~ ~<e. 

(3) Algorithm 2 can be used for solving Problem (P1) where the objective 
function is a continuous convex function. In this case the subprograms encountered 
in determining the lower bounds are convex programming problems. 

The following convergence theorem can be proved by an analogous argument 
as the one in the proof of Theorem 1. 

THEOREM 2. (i) If the algorithm terminates at some iteration k, then ak =/3k is 
the optimal value of Problem (P1). 

( ii ) If the algorithm is infinite, then/3k S f ,, and the sequence {w k } has a limit 
point which solves ( P1). 

(iii) If during the execution of the algorithm a feasible point is available, then 
ak ~ f .  and any limitpoint of the sequence {x k} solves (P1). 

REMARKS. (1) If in Algorithm 2, at each iteration k we choose ~ such that 

f l (wj)  f3(wJ) : 1 <~ j <~ k}  
~k E argrlfin f2(wJ) fa(wJ) 

then the sequence 

{ fl(~ k) f3(~ k) } 
f2(W k) f4(W k) 

is nonincreasing. Thus, from (ii) it follows that any limit point of {~k } is an optimal 
solution to (P1). 

(2) In the two algorithms presented above one can use midpoint bisection [3] 
i.e., if Ik = [tl, t2], then 

I~  := {t E I k ,  t ~ < ( t l + t 2 ) / 2 } ,  

I + := {t E I k ,  t > / ( t l + t 2 ) / 2 } .  

This branching operation does not take into account the information obtained from 
the bounding operation as well as the functions involved in the problems. However, 
the convergence of the algorithms with this branching operation is also ensured 
due to the fact that any infinite nested sequence of intervals generated by it tends 
to a single point [3]. 
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(3) From the above algorithms it is easy to see that they can be used for solving 
Problems (P) and (iDa) where the product of two affine fractional functions is 
replaced by the function 

F(x) : :  I (fl(x)'~ f3(x) 
\ f2(x) l  I f4(x) 

with l being a continuous function of one variable whose global minimum and 
maximum over a compact interval can be found easily. Example for such a function 
is any concave or convex function. In this case the lower bound/3(I)  is given by 

3 ( I )  : min{/3,(I) , /5"(I)} 

where, for Problem (P), 

/5.(I) := min 1. f4(x) " x E D ,  - - E I  , 
f2(x) 

m l n ~ - t '  r , , f3(x).~ f l (x)  ~t /3"(I) := x E D, f2(x----T E I , 

and for Problem (P1) 

min~  fs(x)  . I f3(x) f3(x) 
/5,(1) := [ f 6 ( x )  x E D, ~ +or ~<0, --f4(x) E I j ,  

�9 [ fs (x)  f3(x) f3(x) ] 
/5"(1) := m l n ~ f 6 - - - ~ ' x E D  , - l ,  f 4 - ~ - + c r ~ < 0  , f4 (x -~EI f ,  

with 

1 , :=min{ l ( t ) : tE  I}, l* : = - m a x { l ( t ) : t E  I )  

for both cases. 
Finally, it follows, from the role for calculating ~3(I), that if the function 

[f3(x)/f4(x)] > 0 for every x E D, then we do not require that a global maximum 
o f / o v e r  a compact interval is easy to find. Likewise, if [f3(x)/f4(x)] < 0 on D, 
then the assumption that the global minimum of l over a compact interval is easy 
to find may be avoided. 

4. Computational Experiments 

We now present some preliminary results from computational experiments of the 
algorithms proposed in Section 2 and Section 3. We solved Problem (P) and (P1) 
with a polyhedral convex set D given by 

D : = { A x < ~ b ~  x>lO), 

where z E R n, A is an m • n matrix and b E R "~ . All elements of A, b and ci E R ~ 
(i = 1 , . . . ,  6) were randomly generated together with their signs. The program 
was coded in FORTRAN 77 and tested on a computer IBM/PC AT Turbo 286. 
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TABLE I. 

LE D. MUU ET AL. 

Prob M N NLFP MAXINT ITER TIME Algorit 

1 10 50 77 21 54 14.43 1 
2 10 80 58 14 35 14.93 1 
3 10 100 65 17 42 24.06 1 
4 15 40 127 30 83 52.47 1 
5 15 60 43 6 23 32.67 1 
6 15 100 69 15 42 70.96 1 
7 20 100 112 29 69 217.87 1 
8 10 15 54 4 15 5.6 2 

9 10 80 34 1 9 15.4 2 
10 15 40 34 1 8 19.4 2 
11 15 60 26 1 6 21.9 2 
12 20 30 118 12 31 107.3 2 

13 20 40 14 1 3 18.1 2 

N: number of variables 
M: number of constraints (without constraints x /> 0) 
NLFP: number of linear fractional programs 
MAXINT: maximum number of the intervals stored in the memory 
ITER: number of iterations 
TIME: CPU time (in seconds). 
In the tested problems we terminate the program if ]~k - fl(Wk)/f2(wk)l ~ elf(wk)l, where 
e = 10 -5. 

The results of the computational experiments are shown in Table I. 
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